

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2005/0065018 A1

Llinas et al.

(43) Pub. Date: Mar. 24, 2005

PREPARATION AND USE OF **HETEROGENEOUS CATALYST** COMPONENTS FOR OLEFINS **POLYMERIZATION**

Inventors: Gerardo Hidalgo Llinas, Cartagena (Murcia) (ES): Antonio

Munoz-Escalona Lafuente, Madrid

(ES)

Correspondence Address: John Palmer c/o LADAS & PARRY **Suite 2100** 5670 Wilshire Boulevard Los Angeles, CA 90036-5679 (US)

(73) Assignee: (1) Repsol Quimica S.A.

(21) Appl. No.: 10/863,591

(22) Filed: Jun. 7, 2004

Related U.S. Application Data

Division of application No. 09/300,302, filed on Apr. 27, 1999, now abandoned.

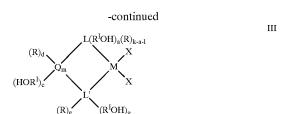
(30)Foreign Application Priority Data

(EP) 98500106.4 Apr. 29, 1998

Publication Classification

(51) **Int. Cl.**⁷ **B01J 31/00**; C08F 4/44 (52) U.S. Cl. 502/152; 502/117; 502/150; 502/102; 502/103; 526/127; 526/160; 526/943

(57)**ABSTRACT**


Heterogeneous catalytic component obtainable by reacting a porous inorganic support with a metallocene compound characterized in that the metallocene compound is defined by the following general formulas:

$$(LR_k)_z[LR_{k\text{-}f}(R^1OH)_f]_xMX_y$$

$$L(R^1OH)_a(R)_{k\text{-}a\text{-}1}$$

$$(R)_{d} \xrightarrow{C_{m}} L(R^{I}OH)_{a}(R)_{k-a-1} \times X$$

$$(HOR^{I})_{c} \xrightarrow{X} X$$

$$L(R^{I}OH)_{b}(R)_{k-b-1}$$

wherein:

Ι

L, equal to or different from each other, is selected from the group comprising: cyclopentadienyl, indenyl, tetrahydroindenyl, fluorenyl, octahydrofluorenyl or benzoindenyl; each R is independently selected from hydrogen, C₁-C₂₀ alkyl, C₃-C₂₀ cycloalkyl, C₆-C₂₀ aryl, C₃-C₂₀ alkenyl, C₇-C₂₀ arylalkyl, C₇-C₂₀ alkylaryl, C₈-₂₀ arylalkenyl, linear or branched, optionally substituted by 1 to 10 halogen atoms, or a group SiR^{II}₃; each R^I equal to or different from each other is a divalent aliphatic or aromatic hydrocarbon group containing from 1 to 20 carbon atoms, optionally containing from 1 to 5 heteroatoms of groups 14 to 16 of the periodic table of the elements and boron; each Q is independently selected from B, C, Si, Ge, Sn; M is a metal of group 3, 4 or 10 of the Periodic Table, Lanthanide or Actinide; each X is independently selected from: hydrogen, chlorine, bromine, ORII, NRII2, C1-C20 alkyl or C6-C20 aryl; each RII is independently selected from $C_1\text{-}C_{20}$ alkyl , $C_3\text{-}C_{20}$ cycloalkyl, C_6 - C_{20} aryl, C_3 - C_{20} alkenyl C_7 - C_{20} arylalkyl, C₂-C₂₀ arylalkenyl or alkylaryl, linear or branched; R^{II} is methyl, ethyl isopropyl; L' is N or O; when L is cyclopentadienyl k is equal to 5, when L is indenyl k is equal to 7, when L is fluorenyl or benzoindenyl k is equal to 9, when L is tetrahydroindenyl k is equal to 11 and when L is octahydrofluorenyl, k is equal to 17; z is equal to 0, 1 or 2; x is equal to 1, 2 or 3; y is equal to 1, 2 or 3; x+y+z is equal to the valence of M; m is an integer which can assume the values 1, 2, 3 or 4; a and b are integers whose value ranges from 0 to k-1; f is an integer whose value ranges from 1 to k; g is 0 or 1; c and e are equal to 0 or 1; a+b+c is at least 1; a+g+c is at least 1; d is equal to 0, 1 or 2; when Q is B, then c+d=1; when Q is C, Si, Ge or Sn, then c+d=2; when L' is N, then g+e=1; when L' is O, then g=0 and e=0.