Un método diseñado por físicos españoles corrige los errores del ordenador cuántico

El registro cuántico de siete componentes podría servir como módulo básico para un ordenador cuántico que pueda corregir todo tipo de errores. / IQOQI/Harald Ritsch
Fuente: sinc.es
Un equipo de físicos españoles y austríacos ha logrado codificar un bit cuántico (qubit) en estados entrelazados de varias partículas y, por primera vez, realizar con él computaciones cuánticas robustas y resistentes. El registro cuántico, de siete átomos, podría servir como módulo básico para un ordenador cuántico con corrección de todo tipo de errores.
El futuro ordenador cuántico, el gran reto científico para muchos físicos, necesitará, como todas las computadoras, un método para corregir los posibles errores en sus cálculos. La revista Science ha anunciado que, por primera vez, un equipo de científicos de Austria y España ha conseguido corregir errores arbitrarios con qbits o bits cuánticos y realizar computaciones cuánticas robustas y resistentes.
Existía una carrera entre varios equipos mundiales para llegar a este resultado. “Nosotros lo hemos conseguido con el laboratorio de grupo de Rainer Blatt en Innsbruck y con un modelo teórico que desarrollamos en mi grupo de la Universidad Complutense de Madrid (UCM) en 2006″, explica a Sinc Miguel Ángel Martín-Delgado, del Departamento de Física Teórica I de la UCM.
“Un bit cuántico no solo es muy complejo y no puede ser copiado, sino que además los errores en el mundo cuántico son más variados y difíciles de combatir que en los ordenadores de hoy en día”, explica Thomas Monz, del Instituto de Física Experimental de la Universidad de Innsbruck (Austria). “Para poder detectar y corregir errores en un ordenador cuántico es necesario recurrir a sofisticados códigos cuánticos de corrección de errores”.
El código, desarrollado por el Grupo de Información y Computación Cuántica (GICC) de Martín-Delgado, distribuye los qubits en una red bidimensional en la que pueden interactuar con las partículas vecinas.
En el laboratorio de la Universidad de Innsbruck, los físicos utilizan una trampa de iones en la que atrapan siete átomos de calcio. Mediante láseres, se enfrían hasta casi alcanzar el punto cero de temperatura, y pueden ser controlados con alta precisión. Los investigadores almacenan los estados cuánticos frágiles del bit cuántico lógico en los estados entrelazados de estas partículas, y es el código cuántico de corrección de errores el que proporciona el programa que lo hace robusto.
“Por la elevada complejidad del estado cuántico, codificar el bit cuántico lógico en estos siete bits cuánticos ha sido un verdadero desafío experimental”, comenta Daniel Nigg, del grupo de investigación de Rainer Blatt. Los físicos realizaron la codificación en tres pasos, en cada uno de los cuales aplicaron una secuencia compleja de pulsos de láser para entrelazar grupos de cuatro bits cuánticos vecinos.
“Con esto se ha conseguido por primera vez utilizar siete átomos de manera controlada para almacenar un único bit cuántico”, cuenta entusiasmado Markus Müller, que en el año 2011 se trasladó de Innsbruck a la Universidad Complutense de Madrid. “Estos átomos, entrelazados de esta forma específica, proporcionan suficiente información para sucesivas correcciones de errores y computaciones cuánticas”.
Como curiosidad, Martín Delgado comenta que “el estado cuántico construido [el registro del ordenador cuántico] es el más complejo logrado experimentalmente hasta ahora. Es genuinamente distinto de experimentos anteriores porque la complejidad de su entrelazamiento es superior”.